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Rolling of unsaturated porous materials: Evolution of a fully saturated zone
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When a roll moves over a partially fluid filled porous layer, the degree of saturation in the porous layer will
change in ama priori unknown area which is affected by the roll. In this work, a mathematical model is
developed that describes the saturation dynamics in the porous layer for moderate rolling velocities. The model
is based on two-phase flow equations in one dimension. It can be expressed as a nonlinear second order
convection-diffusion equation that can be solved by stan@#dind finite volume techniques. The size of
the area affected by the roll, and within this area the degree of saturation, fluid pressures, and fluid velocities,
can be predicted. An example is studied where a fully saturated zone evolves between the rolls when the rolling
velocity is increased beyond some critical value.

PACS numbd(s): 47.55.Mh, 81.05.Rm

[. INTRODUCTION system is affixed at the center of the top roll, i.e., the coor-
dinates of the center of the top roll are time independent. As
We consider a porous layer partially filled with a fluid a consequence, the porous layer is moving in the positive

which is compressed either between two rotating rolls odirection. They direction (following the roll axe$ is ne-

between a rotating roll and a fixed surface, as shown in Figglected. This is a valid assumption in the case of paper ma-

1. Technological applications of this process include the dry<hine press sections, where typical rolls are up to 10 m long,

ing of veneers, paper, and clothes, or the extraction of winewhile the contact area between the felt and paper sandwich

oil, and sugar juicésee Ref[1]). Our starting point was an and the rolls extends only over a few centimetersllime-

investigation of the rolling process performed by Best in Refters in the x direction @ direction). The porous layer is

[2] using paper machine press felts as a porous layer. Thesssumed to consist of three phases, a solid phase indexed

press felts carry the wet paper layer in paper machines, aridls” and two fluid phases indexed f and *g,” which

absorb the moisture that is squeezed out from the paper ducerrespond to the felt fibers, the water phase, and the air

ing the rolling process. Based on an experimental data analyhase in press sections. These three phases will be treated in

sis, Best concludedl) that a fully saturated zone evolves in the usual way as a mixture of overlapping continua, cf. Ref.

press felts between the rolls under typical operational condif3]. Following Ref.[3], the momentum balance of thehase

tions, and(2) that the water is accelerated between the rollscan be written

analogously to the acceleration of water in a Venturi pipe. As

we will show, the latter effect is closely related with the Dyv¢

evolution of a fully saturated zone. bipi o~V U dipibr=my. (2.1

At least in the rolling of press felts and paper, the evolu-

tion of a fully saturated zone critically determines the effeC'Here, &y is the volume fractionp; (in kg/n?) the intrinsic

tiveness of the entire process, since it is obvious that pre . : . .
felts need to be unsaturated in some part of the rolling zonsie%aSS densityyy (in m/s) the velocity,ty (in Pg the stress

if they are to take up significant amounts of water from the

paper. To clarify the basic physical principles and mecha-
nisms that are behind the evolution of fully saturated zones W

in the rolling of unsaturated porous layers, a mathematical —_— porous layer
model was developed that is described in Sec. Il below. The

solution of the model equations is discussed in Sec. lll. Re- m
ferring to the rolling of a paper machine press felt as an —_—
example, it is then shown that the model predicts the evolu-

tion of a fully saturated zone in accordance with experimen- —_—

tal observations made in the Heimbach laborat@gc. IV). W

porous layer

In the following, we will refer to the coordinate system N

and terminology introduced in Fig. 2. It is assumed that the FIG. 1. A porous layer compressed between two rotating rolls
rolls are rotating counterclockwise, and that the coordinatétop) or between a rotating roll and a fixed surfabetton).

IIl. AMODEL OF THE ROLLING PROCESS
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“Z upstream downstream mpdels, considerable improyements in the undgrstanding of
side side this process have been achieved. An example is the general
— shape of the water pressure functip(x), which was pre-
dC;dpin) dicted in Ref.[6] and then experimentally verified by Beck
— in Ref.[13]. In particular, Beck found the pressure peak to be
locatedbeforethe center of the rolling zone, as predicted in
Ref.[6] and also by Wabhlsitr in Ref.[14], based on theo-
- retical arguments.
b Whether it is reasonable to consider xdirection flow
model or az-direction flow model depends on the aspects of
z the rolling process which one wants to understand. If one
asks what determines the evolution of a fully saturated zone
in a rolling process, one will certainly find ttfephase flow
in the x direction, v}, among the most important factors,
since it determines the rate at which fhghase is transported
into the rolling zone. We have therefore decided to investi-
X gate anx-direction flow model, neglecting the dimension.
Xl(tlimm) X,(dlmin) x b o Then, referring to Egs(2.2) and (2.3), the momentum and
mass balances become

FIG. 2. Coordinate system and terminology in the case of two
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rotating rolls(top picture and one rotating rol{bottom picture. Ki |
¢f(Uf_Us):—zpf, (2.9
tensor b (in N/kg) the specific body forcem; (in N/m®) the
rate of momentum exchange into tfigoghase, and;/Dt ,
J @ f (depyvg)' =0, 2.5

signifies the material derivative in tHeghase.

Considering the slow flow regiménegligible forces of .
inertia) under stationary conditions, treating thehase as Where the tensor and vector quantities are now numbers re-
Newtonian, neglecting gravity, and taking the usual Stoked€Mng to thex direction, and the prime signifies thede-

drag form for the momentum exchange tefsee Ref][3]) rivative. In the following, it will be assumed that the solid
Eq. (2.1) becomes " velocityvg in Eq.(2.4) is a constant reflecting the velocity of

the roll surfaces in the direction. This means that small
K differences in the--direction velocity implied by the circular
di(Vi—Vg)=——-Vps, (2.2 geometry of the roll surfaces are neglected, an assumption
Ki which can be safely made in the case of paper machine press
sections where typical roll diameters are above 1000 mm,
while the indentation of the felt is about one millimeter.
A new functiond(x;d;,) has been introduced in Eg.

where u; (in Pasg, Ky (in m?), andps (in Pa are the vis-
cosity, permeability tensor, and mechanical pressure of the

hase, ands, is the velocity of the porous layer. Equation . .
?2 2 is the tjvo-phase ﬂow)[/Darcy Iavl?/ for the gase oga mO\/_(2.5) which expresses the thickness of the porous layer as a
) function of x and the minimum distance between the roll

ing porous medium, which means that the relative Darcy

) . surfacesd i, (see Fig. 2 We will refer tod as the “shape
velocity ¢¢(Vi—Vs) must be taken instead of the usyal; . o mn P
The mass balance of tHephase can be written in the function.” Note that the mass balance equati@rb) implies

stationary case 3] a‘no flow”-coqdition on the top _and bottom surfaces of the
porous layer, i.e., thé phase is not allowed to escape
V(vy)=0. 2.3 through_these surfaces. This is in partial qo_ntradiction with
the reality in the case of press felts, since it is observed that
ter can escape through the top and bottom surfaces of a
elt close to the center of the rolling zone, particularly at the
downstream side. We will come back to this point later. Let
t us just remark here that it is easy to account for any available
guantitative information on water losses near the rolling zone
just by adding an appropriate source term at the right hand

The g phase is neglected, and assumed to be essentially
atmospheric pressure, i.ga4=0, which is the well known
Richards assumption. As emphasized in Rdf, this as-
sumption does not imply that thg phase is stagnant, bu
rather the opposite: it has a very high mobiligmall pres-
sure gradients suffice to initiagphase flow. In our case,

the Richards assumption is justified by our emphasis on th&id€ of Eq.(2x.5). o
slow flow regime. Besidesvt, the shape functionl is another key factor

We are interested in the flow regime betweenoordi-  determining the evolution of the fully saturated zone. While

natesa andb in Fig. 2, where it is assumed that for[a,b] vt determines the rate at which thphase is transported into
the three phases are essentially at fes@ frame of refer-  the rolling aread determines the space available feghase
ence affixed to the solid phaselthough the real flow pat- Storage. We assume that—as it is the case in paper machine
tern betweena and b is undoubtedly two-dimensional, a Press sections—the shape functibrs determined from the
number of models have been investigated in the case of w&Quilibrium of forces

pressing which assume one-dimensional flow either inxthe

direction[5—7] or in the z direction[8—12]. Based on these Fi+F.=F, (2.6
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where F; and F¢ denote the line forces exerted by the can be measured. The capillary pressure is defineg.as
phase, and the solid phase on the rolls, whilés the line  =p,—p; which meansp.=—ps in our case, since we as-
force exerted by the rolls on thephase and on the solid sumep,=0; the saturation iS= ¢:/¢, where is the po-
phase. These forces have ur(i¥m) which are to be under- rosity (ratio between void and total volumeNow, if S
stood as “force pem length of the rolls in the direction.” =g(ps) expresses the known relation between saturation and
We remark that Eq(2.6) expresses the classical Terzaghif-phase pressure, then E@8.4) and(2.5 can be written as
principle as discussed in R¢B]. To connect Eq(2.6) with

our previous equations, it is necessary to have a model for K(,9(pt)) o

the deformation of the porous layer. Since paper machine $9(Pr)(vs—vg) =~ s fr (214
press felts behave viscoelasticalbee Ref[15]), we choose
a viscoelastic model. Precisely, we assume that the felt de- (depg(ps)vs)' =0. (2.15
forms in thez direction only following a nonlinear Kelvin- ) ] ) )
Voigt law Assuming that the compression of the solid phase is neg-
ligible compared with the compression of the open pore
d spaces, the porosityp(x;dyin) can be computed from
Tzz(t)—E(e(t))—FAaE(E(t)), (27) d(X;dmin)v using
which may be written as dopo—d(X;dmin) (X;dmin) =do—d(X;dpin). (2.16
d The latter equation says that “the difference between the
T,AX)= E(e(x))+vsA& E(e(x)), (2.8 uncompressed open pore volume and the open pore volume
at some coordinate equals the total reduction of volume.”
using the transformatior=uv¢t. We will now describe how We have parametrized the functigipy) as
d(x;dpin) is determined for a gived,i,. For Xx<x,(dmin)
(Fig. 2, d(x;dyin)=dg, where dy is the uncompressed 1 +s
thickness of the porous layer. Fare [X;(dmin) X (Amin) 1» _ pe\" T pes<O
d(x;dmin) follows the geometry of the roll surfaces until, 9(pr) = 1-s, + a (2.19
becomes zero at=x,(din). For x>x,(dnin), 72,=0, and 1 -0
hence according to Eq2.8) the straine(x;dy,;,) can be ' Pe=0,
determined from the ordinary differential equation where 0<s,<1, a<0, n>1 (see Ref.[16] for various
d 1 other parametrizationsFor our following discussion, it is
—E(e)=— —E(e), (2.9  important to notea) that saturation valueS=g(ps) <1 cor-
dx vsA respond to negativp; values, andb) thatg(py) is a bijec-

tion for saturation value$<1. As it is indicated in Eq.
(2.14), we assume another constitutive relation Kgrwhich
is expressed as a nonlinear function of porosity and satura-

using the given inital valu€E[ e(X,(dmin);dmin)]. Then by
definition of the strain, one obtains

d(X;dryin) = Aol 1+ €(X; i) - (210 fonas
: : 3
F: andFg in Eq. (2.6) can now be written as K(($.S)=k ¢ 2Sm' (2.18
X¢(dmin) 1= ¢
Fi(min) = fxl(dmin) P dx, 21D herek>0 andm>1. Similar expressions fdf; were used,

e.g., in Refs[17] and[9]. The factor¢®/(1— ¢?) originates
from the Kozeny-Carman equati¢see Ref[18]), which is a
widely used empirical expression relating porosity and per-
meability. The factoiS™ is needed sinc&;(S, ¢) is arela-

tive permeability; see the discussion in Reff8] and [17].
This factor reduce; if the saturation decreases, since in
that case the network of flow channels which is available for
Note that in Eq(2.12) € is obtained frond via Eq.(2.10.  f-phase flow becomes smaller. Finally, boundary conditions

X¢(dmin)

Fs(dmin):f (E(E(X;dmin))

X (dmin

d
+vSA&E(e(x;dmm)))dx. (2.12

Equations(2.11) and(2.12 transform Eq.2.6) into must be defined. It is natural to require
X (dmin) d lim S(X):SO (219)
f pf+E(E(X;dmin))+UsAd_E(G(X;dmin)) dx=F. X— — 0
X (dmin) X
(213 gng
Now our model consists of Eq&.4), (2.5, and(2.13 for l _ 22
the unknowng¢(X), v¢(x), ¢¢(x), anddy,;,. Obviously, an X'_Tovf(x) Us: (2.20

additional constitutive relation is needed to close the system.
As explained in Ref[3], it is appropriate here to use the  Equation(2.19 means that the saturation in the upstream
relation between capillary pressysgand saturatiolswhich  direction “far away from the rolling area” is known. Equa-
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FIG. 3. Saturation-pressure functigips).

tion (2.20 means that “far away from the rolling area” in Eq. (2.13 is a nonlinear equation in the remaining unknown
the downstream direction there is fiphase flow relative to d,,;, which can be solved, e.g., by bisection until the equi-
the movement of the porous layer. We will restrict our attendibrium dy;, is found.

tion to the casesy<1 in the following, since we are inter-

ested in the evolution of a fully saturated zone from unsat- IV. EXAMPLE

urated conditions. . .
As an example we take the rolling of a wet press felt as it

is used in paper machines. We assume that the press felt is
rolled as it is, i.e., without a paper layer. The following pa-
For some giverd,;;>0, Eqgs.(2.14 and (2.15 can be rameter values represent a typical situation in a press section

IIl. SOLUTION OF THE MODEL EQUATIONS

expressed as of a paper machinémost of the measurement values are
from the laboratories of Heimbach and JWIThe water
Kil (X dmin), 9(Ps(x)] , |’ viscosity us was set to 4. 10”4 Pa's, which corresponds to
B it P (X) a temperature of 60°C. In the expression for the relative
permeabilityK; [Eq. (2.18)], the permability factok was set
+[d(X;dmin) (X; dmin) 9(Ps(X))vs]" =0, to k=10"12m?, and the exponenh was set to 3.4 following

(3.2 Ref.[9]. For the saturation-pressure functigtp;) we took
the data shown in Fig. 3 which were fitted to Eg.17). For
which is a nonlinear convection-diffusion equati@i. Ref.  the stress-strain functio&(e) we took the data shown in
[19]) in the unknownp;(x). The boundary condition®.19 Fig. 4, which were fitted to
and(2.20 can be approximated by

—C)= = -1 , 3.2
Pil )= Por=8 (So) 32 The viscoelastic time constant was set to 0.4 mghis is in
p/(C)=0 3.3 the same order of magnitude Asvalues that may be derived
f ' from measurements of “felt-springback” given in RgL5]).

for some largeC < R, [use Eq(2.4) together with Eq(2.20 If not stated otherwise below, the remgining data d5g
to obtain Eq.(3.3)]. After linearization, the systerf8.)— = 2-5 MM, $=0.52, andS,=0.5; the radius of the rolls is
(3.3 can be solved by some standard finite volume discretiR =100 mm, and==70 kN/m. -

sation[20]. Upwinding must be used for high values of the ~Simulation results for rolling velocities betweens
convective velocity, i.e., for high porous layer velocities =0.0001 and 50 m/min will be discussed. We restrict our

[19]. C must be chosen large enough such that no influenc@ttention to this range of velocities since it can be shown that
of C on the solutionps can be observed.

If Egs. (3.1)—(3.3 is solved for some give,;,, the
resulting ps(X;d,;,) can be inserted into Eq2.13. Then LJWI Ltd., 48 Richardson Rd., Kanata, Ont. L2L 1X2.

E(e)=¢". (4.2
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FIG. 4. Stress-strain functioB(e).

beyondv =50 m/min inertial forces become importaie., m/min. This decrease of the contact area was both due to the
the first term on the left hand side of E@.1) reaches the fact that the roll distancel,,;, increased with the machine
same order of magnitude as the stress and momentum exelocity (see below, and it was due to the viscoelastic effect
change terms The saturation profiles are shown in Figs. 5which caused a stronger reduction of the contact area at the
and 6, and corresponding pressure profiles in Figs. 7 and &ownstream sidéby 1.2 mn) compared to the upstream side
The area of contact between the felt and the rolls wa$0.4 mm). As Figs. 5 and 7 show;=0.0001 m/min practi-

approximately betweer 21.3 and+21.3 mm for small roll-  cally corresponds to the standing machine, i.e., the water
ing velocities, and between 20.9 and 20.1 mm fov =50  pressure between the rolls remains unchanged and the satu-

Vs=0 .0001 m/min eo—
Vs=o .01 m/m:.n [ITTTTTT

FIG. 5. Saturation profiles for solid velocities betwaeys=0.0001 and 1 m/min.
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FIG. 6. Saturation profiles for solid velocities betwaey+1 and 50 m/min.

ration profile shows a symmetric increase around the centdip;>0) in a small area upstream of the rolling zone center
of the rolling zone ak=0 mm, reflecting the decrease of the x=0, which corresponds to full saturati@+ 1 as explained
porosity ¢ in the rolling zone.

above. Atvg=1 m/min, the porous layer is fully saturated
At vs=0.01 m/min, the saturation profile becomes un-about 70 mm before the first contact between felt and rolls at
symmetric since an increase of the saturation at the upstreaabout —20 mm, and the water pressure peak is now mark-

side superimposes the symmetric “standing machine” satuedly above zerg¢about 8000 Pa As the velocityv  is further

ration profile. As Fig. 7 shows, there is a corresponding presincreased, the fully saturated area at the upstream side be-
sure rise at the upstream side of the rolling zone.vAt

8000

comes smaller again, while the pressure peak increases con-
=0.1 m/min, the water pressure is more than atmospheritinuously up to a level of about 0.3 MPa &{=50 m/min

6000 -
L}
3 4000 |
Dl
&l
& 2000 |

T
o

%,
%
%

o 0‘&“\“\\\‘ -l"-----u--n-u-u........ .....
-2000 ““‘7' L 1 1 1 1 1
-120  -100 80 — — — : -
x [mm]

V=0.0001 m/Min mmm—

Vs=0 .01 m/m:.n ssnasess

Vs=° .1 m/min snsasns
vs=1 m/min N

FIG. 7. Pressure profiles for solid velocities betwegr 0.0001 and 1 m/min.
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FIG. 8. Pressure profiles for solid velocities betwegr 1 and 50 m/min.
(Figs. 6 and 8 rolling area. Close to the center of the rolling zone, however,

Figures 9 and 10 show the development of{v¢)/v,
depending on the machine velocity,. We refer to ¢;
—vg)lvs as the “specific relative fluid velocity,” since it
measures the movement of the water relative to the feltin

the water is accelerated until a maximum velocity is reached
atx=0. At maximum velocity, the water is more than 40%
faster than the felt for all felt velocities;<50 m/min.

Figure 11 shows the development of the line forces ex-

units. As the figures show, the relative movement of theerted by the felt and the water phase on the réllsandF; .
water in the felt is always opposite to the machine directiorAs it can be seenF; begins to increase at about=1
at the upstream side of the roll and in the first part of them/min, until it becomesF;=6.5 kN/m or 10.2% ofF

Vs=0.0001 m/Min e—
vg=0.01 m/min ssssssss

20

Vs=0 .1 m/mn [ILTTITIT

vg=1l m/min s

FIG. 9. Specific relative fluid velocity profiles for solid velocities betwegr 0.0001 and 1 m/min.
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FIG. 10. Specific relative fluid velocity profiles for solid velocities betwegs 1 and 50 m/min.

=63.5 kN/m atv ;=50 m/min. The sum oF; andFg always an experimental data analysis. The increase,pf was veri-
equals the line force exerted by the rolls on the water-felfied on an experimental paper machine in the Heimbach
system,F=70 kN/m, as required by Eq2.6). The figure laboratory. The pressure profiles in the above simulations
also shows the equlibrium distance between the rdilg, . reflect the qualitative pattern of measured pressure profiles in
As a consequence of the increasifg, d,;, also increases, Ref.[13]. In particular, the pressure peak is located before
i.e., the pressure in the water phase forces the rolls to inthe center of the rolling zone, as reported by Beck in Ref.
crease their distance. [13].

The simulation results reflect important qualitative char- Beck measured pressure peaks between 70 000 Pa and 1.2
acteristics of the rolling process in paper machines. As menMPa depending on the initial saturation of the felt. Unfortu-
tioned in Sec. |, the acceleration of the water phase in th@ately, a comparison with our results is difficult since Beck’s
rolling zone has already been postulated in R&fbased on results refer to a machine velocity of 381 m/min, which is in

1 . 63 * v PrTTTTYTTTTRTITINY u---lu-luh.._"“|".“". - 70
1.625 )
l1.62 )
s0 &
Z
— 1,615 :
E 40
= 1.6} 8
] ‘ :
TF 30 9
1.605 g FIG. 11. Line forces andy, .
20 .
1.6 :
1.595 F -: i’
1 ) 59 y ll_lqullIllﬂlllIllII 0
0.1 1 -

vy, [m/min]

dmin — Ff ssssssase FS CICTTTTYTIT
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the high velocity regime where inertial forces are important.the slow flow regime here, referring to velocities uputg
Also, Beck used a much smaller roll diametd@5.54 cm =50 m/min, where there are only negligible water losses
instead of 100 cm in our capand there is no or no clearly observed at the downstream side of the rolls. The upstream
interpretable information on key parameters such as the feiide water wedge, on the other hand, undoubtedly violates
permeability or the initial felt saturation. At least, it seemsthe “no flow” condition, since at that point water crosses the

that the pressure peak of 300 000 Pa Computed by our mod@p and bOttom surfaces of the felt. However, it .iS important
for a machine velocity of 50 m/min is in the right order of to note that this does not mean any net losses since the water

magnitude. wedge is stationary ib is ke_pt fixed. Then,_any water vol-
The upstream side fully saturated zone that develops i¥Me that flows from the felt into the wedge is replaced by an
the simulations can be associated with a water wedge that fauivalent volume flowing backwards into the felt, forced by
observed at the upstream side of the rolls in paper machindd€ downstream moving surfaces of the rolis. Thus at the
[6]. According to observations made at an experimental padPstream side our use of a no flow condition can be seen as
per machine in the Heimbach laboratory, this water wedgé" aPproxmatlon of the real situation where there is “no net
becomes smaller for machine velocities aboye: 1 m/min,  10W” through the felt surfaces.
which parallels the above simulation results. At aboyt
=500 m/min, the water wedge disappears, and some water is
seen to spray off at the downstream side of the rolls. We thus A model has been developed that can be used to analyze
conjecture that simulations beyoad=50 m/min will show the evolution of a fully saturated zone in processes involving
that the fully saturated zone will be further reduced on thethe rolling of unsaturated porous materials. The model has
upstream side until it is covered by the rolls again. The facbeen expressed as a nonlinear convection-diffusion equation
that water sprays off at the downstream side is probably duthat can be solved bgupwind) finite volume techniques. It
to the combined effect of the downstream-moving fully satu-was shown that the model correctly reproduces qualitative
rated zone on the one hand, and the upstream-moving dowgharacteristics of paper machine rolling processes. Although
stream end of the felt-rolls contact ar@aused by the vis- the model was developed with a focus on paper machine
coelastic effegt on the other hand. We are currently rolling processes, we expect that it will be useful for an
implementing inertial forces into our model for a further in- analysis of other rolling processes too. In current models of
vestigation of this effect. sugar cane rolling, for example, the location and size of the
Regarding the boundary conditions at the top and bottonfully saturated zone is not computed bagsumed a priori
surfaces of the felt, it was said above in our discussion of Eq.21]. We are currently developing extensions of the existing
(2.5 that we are currently assuming “no flow” conditions. models for sugar cane pressing based on a replacement of the
Of course, the upstream side water wedge as well as the fagiscoelastic part of our model by a model that includes the
that water sprays off at the downstream side at higher velociplastic deformation of sugar cane. Also, we are extending
ties show that this condition is partially violated in reality. our model to account for multiple dimensions and the high
The latter effect can be safely neglected, since we focus owelocity regime.

V. CONCLUSIONS
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