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Rolling of unsaturated porous materials: Evolution of a fully saturated zone
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W. Best
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~Received 16 November 1999!

When a roll moves over a partially fluid filled porous layer, the degree of saturation in the porous layer will
change in ana priori unknown area which is affected by the roll. In this work, a mathematical model is
developed that describes the saturation dynamics in the porous layer for moderate rolling velocities. The model
is based on two-phase flow equations in one dimension. It can be expressed as a nonlinear second order
convection-diffusion equation that can be solved by standard~upwind! finite volume techniques. The size of
the area affected by the roll, and within this area the degree of saturation, fluid pressures, and fluid velocities,
can be predicted. An example is studied where a fully saturated zone evolves between the rolls when the rolling
velocity is increased beyond some critical value.

PACS number~s!: 47.55.Mh, 81.05.Rm
id
o

Fi
ry
in

e
he
a
d
a
in
nd
ll
A
e

lu
c

re
on
he
ha
ne
ic
Th
Re
a
lu

en

m
th
a

or-
As
e

ma-
ng,
ich

exed

air
ed in
ef.

olls
I. INTRODUCTION

We consider a porous layer partially filled with a flu
which is compressed either between two rotating rolls
between a rotating roll and a fixed surface, as shown in
1. Technological applications of this process include the d
ing of veneers, paper, and clothes, or the extraction of w
oil, and sugar juice~see Ref.@1#!. Our starting point was an
investigation of the rolling process performed by Best in R
@2# using paper machine press felts as a porous layer. T
press felts carry the wet paper layer in paper machines,
absorb the moisture that is squeezed out from the paper
ing the rolling process. Based on an experimental data an
sis, Best concluded~1! that a fully saturated zone evolves
press felts between the rolls under typical operational co
tions, and~2! that the water is accelerated between the ro
analogously to the acceleration of water in a Venturi pipe.
we will show, the latter effect is closely related with th
evolution of a fully saturated zone.

At least in the rolling of press felts and paper, the evo
tion of a fully saturated zone critically determines the effe
tiveness of the entire process, since it is obvious that p
felts need to be unsaturated in some part of the rolling z
if they are to take up significant amounts of water from t
paper. To clarify the basic physical principles and mec
nisms that are behind the evolution of fully saturated zo
in the rolling of unsaturated porous layers, a mathemat
model was developed that is described in Sec. II below.
solution of the model equations is discussed in Sec. III.
ferring to the rolling of a paper machine press felt as
example, it is then shown that the model predicts the evo
tion of a fully saturated zone in accordance with experim
tal observations made in the Heimbach laboratory~Sec. IV!.

II. A MODEL OF THE ROLLING PROCESS

In the following, we will refer to the coordinate syste
and terminology introduced in Fig. 2. It is assumed that
rolls are rotating counterclockwise, and that the coordin
PRE 621063-651X/2000/62~3!/3891~9!/$15.00
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system is affixed at the center of the top roll, i.e., the co
dinates of the center of the top roll are time independent.
a consequence, the porous layer is moving in the positivx
direction. They direction ~following the roll axes! is ne-
glected. This is a valid assumption in the case of paper
chine press sections, where typical rolls are up to 10 m lo
while the contact area between the felt and paper sandw
and the rolls extends only over a few centimeters~millime-
ters! in the x direction (z direction!. The porous layer is
assumed to consist of three phases, a solid phase ind
‘‘ s’’ and two fluid phases indexed ‘‘f ’’ and ‘‘ g,’’ which
correspond to the felt fibers, the water phase, and the
phase in press sections. These three phases will be treat
the usual way as a mixture of overlapping continua, cf. R
@3#. Following Ref.@3#, the momentum balance of thef phase
can be written

f fr f

D fvf

Dt
2“•t f2f fr fbf5mf . ~2.1!

Here,f f is the volume fraction,r f ~in kg/m3) the intrinsic
mass density,vf ~in m/s! the velocity, t f ~in Pa! the stress

FIG. 1. A porous layer compressed between two rotating r
~top! or between a rotating roll and a fixed surface~bottom!.
3891 ©2000 The American Physical Society
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3892 PRE 62K. VELTEN AND W. BEST
tensor,bf ~in N/kg! the specific body force,mf ~in N/m3) the
rate of momentum exchange into thef phase, andD f /Dt
signifies the material derivative in thef phase.

Considering the slow flow regime~negligible forces of
inertia! under stationary conditions, treating thef phase as
Newtonian, neglecting gravity, and taking the usual Sto
drag form for the momentum exchange term~see Ref.@3#!,
Eq. ~2.1! becomes

f f~vf2vs!52
K f

m f
•“pf , ~2.2!

wherem f ~in Pa s!, K f ~in m2), and pf ~in Pa! are the vis-
cosity, permeability tensor, and mechanical pressure of tf
phase, andvs is the velocity of the porous layer. Equatio
~2.2! is the two-phase flow Darcy law for the case of a mo
ing porous medium, which means that the relative Da
velocity f f(vf2vs) must be taken instead of the usualf fvf .

The mass balance of thef phase can be written in th
stationary case as@3#

“~f fvf !50. ~2.3!

The g phase is neglected, and assumed to be essential
atmospheric pressure, i.e.,pg[0, which is the well known
Richards assumption. As emphasized in Ref.@4#, this as-
sumption does not imply that theg phase is stagnant, bu
rather the opposite: it has a very high mobility~small pres-
sure gradients suffice to initiateg-phase flow!. In our case,
the Richards assumption is justified by our emphasis on
slow flow regime.

We are interested in the flow regime betweenx coordi-
natesa andb in Fig. 2, where it is assumed that forx¹@a,b#
the three phases are essentially at rest~in a frame of refer-
ence affixed to the solid phase!. Although the real flow pat-
tern betweena and b is undoubtedly two-dimensional,
number of models have been investigated in the case of
pressing which assume one-dimensional flow either in thx
direction @5–7# or in thez direction @8–12#. Based on these

FIG. 2. Coordinate system and terminology in the case of
rotating rolls~top picture! and one rotating roll~bottom picture!.
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models, considerable improvements in the understandin
this process have been achieved. An example is the gen
shape of the water pressure functionp(x), which was pre-
dicted in Ref.@6# and then experimentally verified by Bec
in Ref. @13#. In particular, Beck found the pressure peak to
locatedbeforethe center of the rolling zone, as predicted
Ref. @6# and also by Wahlstro¨m in Ref. @14#, based on theo-
retical arguments.

Whether it is reasonable to consider anx-direction flow
model or az-direction flow model depends on the aspects
the rolling process which one wants to understand. If o
asks what determines the evolution of a fully saturated z
in a rolling process, one will certainly find thef-phase flow
in the x direction, v f

x , among the most important factor
since it determines the rate at which thef phase is transported
into the rolling zone. We have therefore decided to inve
gate anx-direction flow model, neglecting thez dimension.
Then, referring to Eqs.~2.2! and ~2.3!, the momentum and
mass balances become

f f~v f2vs!52
K f

m f
pf8 , ~2.4!

~df f v f !850, ~2.5!

where the tensor and vector quantities are now numbers
ferring to thex direction, and the prime signifies thex de-
rivative. In the following, it will be assumed that the sol
velocity vs in Eq. ~2.4! is a constant reflecting the velocity o
the roll surfaces in thex direction. This means that sma
differences in thex-direction velocity implied by the circular
geometry of the roll surfaces are neglected, an assump
which can be safely made in the case of paper machine p
sections where typical roll diameters are above 1000 m
while the indentation of the felt is about one millimeter.

A new function d(x;dmin) has been introduced in Eq
~2.5! which expresses the thickness of the porous layer a
function of x and the minimum distance between the r
surfaces,dmin ~see Fig. 2!. We will refer tod as the ‘‘shape
function.’’ Note that the mass balance equation~2.5! implies
a ‘‘no flow’’-condition on the top and bottom surfaces of th
porous layer, i.e., thef phase is not allowed to escap
through these surfaces. This is in partial contradiction w
the reality in the case of press felts, since it is observed
water can escape through the top and bottom surfaces
felt close to the center of the rolling zone, particularly at t
downstream side. We will come back to this point later. L
us just remark here that it is easy to account for any availa
quantitative information on water losses near the rolling zo
just by adding an appropriate source term at the right h
side of Eq.~2.5!.

Besidesv f
x , the shape functiond is another key factor

determining the evolution of the fully saturated zone. Wh
v f

x determines the rate at which thef phase is transported int
the rolling area,d determines the space available forf-phase
storage. We assume that—as it is the case in paper mac
press sections—the shape functiond is determined from the
equilibrium of forces

F f1Fs5F, ~2.6!

o
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PRE 62 3893ROLLING OF UNSATURATED POROUS MATERIALS: . . .
where F f and Fs denote the line forces exerted by thef
phase, and the solid phase on the rolls, whileF is the line
force exerted by the rolls on thef phase and on the soli
phase. These forces have units~N/m! which are to be under
stood as ‘‘force perm length of the rolls in they direction.’’
We remark that Eq.~2.6! expresses the classical Terzag
principle as discussed in Ref.@8#. To connect Eq.~2.6! with
our previous equations, it is necessary to have a mode
the deformation of the porous layer. Since paper mach
press felts behave viscoelastically~see Ref.@15#!, we choose
a viscoelastic model. Precisely, we assume that the felt
forms in thez direction only following a nonlinear Kelvin-
Voigt law

tzz~ t !5E„e~ t !…1L
d

dt
E„e~ t !…, ~2.7!

which may be written as

tzz~x!5E„e~x!…1vsL
d

dx
E„e~x!…, ~2.8!

using the transformationx5vst. We will now describe how
d(x;dmin) is determined for a givendmin . For x,xl(dmin)
~Fig. 2!, d(x;dmin)5d0, where d0 is the uncompresse
thickness of the porous layer. ForxP@xl(dmin),xr(dmin)#,
d(x;dmin) follows the geometry of the roll surfaces untiltzz
becomes zero atx5xr(dmin). For x.xr(dmin), tzz50, and
hence according to Eq.~2.8! the straine(x;dmin) can be
determined from the ordinary differential equation

d

dx
E~e!52

1

vsL
E~e!, ~2.9!

using the given inital valueE@e„xr(dmin);dmin…#. Then by
definition of the strain, one obtains

d~x;dmin!5d0@11e~x;dmin!#. ~2.10!

F f andFs in Eq. ~2.6! can now be written as

F f~dmin!5E
xl (dmin)

xr (dmin)

pf dx, ~2.11!

Fs~dmin!5E
xl (dmin)

xr (dmin)S E„e~x;dmin!…

1vsL
d

dx
E„e~x;dmin!…Ddx. ~2.12!

Note that in Eq.~2.12! e is obtained fromd via Eq.~2.10!.
Equations~2.11! and ~2.12! transform Eq.~2.6! into

E
xl (dmin)

xr (dmin)S pf1E„e~x;dmin!…1vsL
d

dx
E„e~x;dmin!…Ddx5F.

~2.13!

Now our model consists of Eqs.~2.4!, ~2.5!, and~2.13! for
the unknownspf(x), v f(x), f f(x), anddmin . Obviously, an
additional constitutive relation is needed to close the syst
As explained in Ref.@3#, it is appropriate here to use th
relation between capillary pressurepc and saturationSwhich
i

or
e

e-

.

can be measured. The capillary pressure is defined apc
5pg2pf which meanspc52pf in our case, since we as
sumepg50; the saturation isS5f f /f, wheref is the po-
rosity ~ratio between void and total volume!. Now, if S
5g(pf) expresses the known relation between saturation
f-phase pressure, then Eqs.~2.4! and ~2.5! can be written as

fg~pf !~v f2vs!52
K f„f,g~pf !…

m f
pf8 , ~2.14!

„df g~pf !v f…850. ~2.15!

Assuming that the compression of the solid phase is n
ligible compared with the compression of the open po
spaces, the porosityf(x;dmin) can be computed from
d(x;dmin), using

d0f02d~x;dmin!f~x;dmin!5d02d~x;dmin!. ~2.16!

The latter equation says that ‘‘the difference between
uncompressed open pore volume and the open pore vol
at some coordinatex equals the total reduction of volume.

We have parametrized the functiong(pf) as

g~pf !55
1

1

12s`
1S pf

a D n 1s` , pf<0

1, pf.0,

~2.17!

where 0,s`,1, a,0, n.1 ~see Ref.@16# for various
other parametrizations!. For our following discussion, it is
important to note~a! that saturation valuesS5g(pf),1 cor-
respond to negativepf values, and~b! that g(pf) is a bijec-
tion for saturation valuesS,1. As it is indicated in Eq.
~2.14!, we assume another constitutive relation forK f which
is expressed as a nonlinear function of porosity and sat
tion as

K f~f,S!5k
f3

12f2
Sm, ~2.18!

wherek.0 andm.1. Similar expressions forK f were used,

e.g., in Refs.@17# and@9#. The factorf3/(12f2) originates
from the Kozeny-Carman equation~see Ref.@18#!, which is a
widely used empirical expression relating porosity and p
meability. The factorSm is needed sinceK f(S,f) is a rela-
tive permeability; see the discussion in Refs.@3# and @17#.
This factor reducesK f if the saturation decreases, since
that case the network of flow channels which is available
f-phase flow becomes smaller. Finally, boundary conditio
must be defined. It is natural to require

lim
x→2`

S~x!5S0 ~2.19!

and

lim
x→`

v f~x!5vs . ~2.20!

Equation~2.19! means that the saturation in the upstrea
direction ‘‘far away from the rolling area’’ is known. Equa
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FIG. 3. Saturation-pressure functiong(pf).
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tion ~2.20! means that ‘‘far away from the rolling area’’ in
the downstream direction there is nof-phase flow relative to
the movement of the porous layer. We will restrict our atte
tion to the caseS0,1 in the following, since we are inter
ested in the evolution of a fully saturated zone from uns
urated conditions.

III. SOLUTION OF THE MODEL EQUATIONS

For some givendmin.0, Eqs.~2.14! and ~2.15! can be
expressed as

2S K f@f~x;dmin!,g„pf~x!…#

m f
pf8~x! D 8

1@d~x;dmin!f~x;dmin!g„pf~x!…vs#850,

~3.1!

which is a nonlinear convection-diffusion equation~cf. Ref.
@19#! in the unknownpf(x). The boundary conditions~2.19!
and ~2.20! can be approximated by

pf~2C!5p0ªg21~S0!, ~3.2!

pf8~C!50 ~3.3!

for some largeCPR1 @use Eq.~2.4! together with Eq.~2.20!
to obtain Eq.~3.3!#. After linearization, the system~3.1!–
~3.3! can be solved by some standard finite volume discr
sation@20#. Upwinding must be used for high values of th
convective velocity, i.e., for high porous layer velocitiesvs
@19#. C must be chosen large enough such that no influe
of C on the solutionpf can be observed.

If Eqs. ~3.1!–~3.3! is solved for some givendmin , the
resulting pf(x;dmin) can be inserted into Eq.~2.13!. Then
-

t-

i-

e

Eq. ~2.13! is a nonlinear equation in the remaining unknow
dmin which can be solved, e.g., by bisection until the eq
librium dmin* is found.

IV. EXAMPLE

As an example we take the rolling of a wet press felt a
is used in paper machines. We assume that the press f
rolled as it is, i.e., without a paper layer. The following p
rameter values represent a typical situation in a press sec
of a paper machine~most of the measurement values a
from the laboratories of Heimbach and JWI1!: The water
viscositym f was set to 4.731024 Pa s, which corresponds t
a temperature of 60 °C. In the expression for the relat
permeabilityK f @Eq. ~2.18!#, the permability factork was set
to k510210 m2, and the exponentm was set to 3.4 following
Ref. @9#. For the saturation-pressure functiong(pf) we took
the data shown in Fig. 3 which were fitted to Eq.~2.17!. For
the stress-strain functionE(e) we took the data shown in
Fig. 4, which were fitted to

E~e!5e r . ~4.1!

The viscoelastic time constantL was set to 0.4 ms~this is in
the same order of magnitude asL values that may be derive
from measurements of ‘‘felt-springback’’ given in Ref.@15#!.
If not stated otherwise below, the remaining data ared0
52.5 mm,f050.52, andS050.5; the radius of the rolls is
R5100 mm, andF570 kN/m.

Simulation results for rolling velocities betweenvs
50.0001 and 50 m/min will be discussed. We restrict o
attention to this range of velocities since it can be shown t

1JWI Ltd., 48 Richardson Rd., Kanata, Ont. L2L 1X2.
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FIG. 4. Stress-strain functionE(e).
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beyondvs550 m/min inertial forces become important~i.e.,
the first term on the left hand side of Eq.~2.1! reaches the
same order of magnitude as the stress and momentum
change terms!. The saturation profiles are shown in Figs.
and 6, and corresponding pressure profiles in Figs. 7 an

The area of contact between the felt and the rolls w
approximately between221.3 and121.3 mm for small roll-
ing velocities, and between220.9 and 20.1 mm forvs550
x-

8.
s

m/min. This decrease of the contact area was both due to
fact that the roll distancedmin increased with the machin
velocity ~see below!, and it was due to the viscoelastic effe
which caused a stronger reduction of the contact area a
downstream side~by 1.2 mm! compared to the upstream sid
~0.4 mm!. As Figs. 5 and 7 show,vs50.0001 m/min practi-
cally corresponds to the standing machine, i.e., the w
pressure between the rolls remains unchanged and the
FIG. 5. Saturation profiles for solid velocities betweenvs50.0001 and 1 m/min.
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FIG. 6. Saturation profiles for solid velocities betweenvs51 and 50 m/min.
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ration profile shows a symmetric increase around the ce
of the rolling zone atx50 mm, reflecting the decrease of th
porosityf in the rolling zone.

At vs50.01 m/min, the saturation profile becomes u
symmetric since an increase of the saturation at the upstr
side superimposes the symmetric ‘‘standing machine’’ sa
ration profile. As Fig. 7 shows, there is a corresponding pr
sure rise at the upstream side of the rolling zone. Atvs
50.1 m/min, the water pressure is more than atmosph
er

-
m
-

s-

ic

(pf.0) in a small area upstream of the rolling zone cen
x50, which corresponds to full saturationS51 as explained
above. Atvs51 m/min, the porous layer is fully saturate
about 70 mm before the first contact between felt and roll
about220 mm, and the water pressure peak is now ma
edly above zero~about 8000 Pa!. As the velocityvs is further
increased, the fully saturated area at the upstream side
comes smaller again, while the pressure peak increases
tinuously up to a level of about 0.3 MPa atvs550 m/min
FIG. 7. Pressure profiles for solid velocities betweenvs50.0001 and 1 m/min.
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FIG. 8. Pressure profiles for solid velocities betweenvs51 and 50 m/min.
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~Figs. 6 and 8!.
Figures 9 and 10 show the development of (v f2vs)/vs

depending on the machine velocityvs . We refer to (v f
2vs)/vs as the ‘‘specific relative fluid velocity,’’ since i
measures the movement of the water relative to the felt invs
units. As the figures show, the relative movement of
water in the felt is always opposite to the machine direct
at the upstream side of the roll and in the first part of
e
n
e

rolling area. Close to the center of the rolling zone, howev
the water is accelerated until a maximum velocity is reach
at x50. At maximum velocity, the water is more than 40
faster than the felt for all felt velocitiesvs<50 m/min.

Figure 11 shows the development of the line forces
erted by the felt and the water phase on the rolls,Fs andF f .
As it can be seen,F f begins to increase at aboutvs51
m/min, until it becomesF f56.5 kN/m or 10.2% ofFs
FIG. 9. Specific relative fluid velocity profiles for solid velocities betweenvs50.0001 and 1 m/min.
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FIG. 10. Specific relative fluid velocity profiles for solid velocities betweenvs51 and 50 m/min.
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563.5 kN/m atvs550 m/min. The sum ofF f andFs always
equals the line force exerted by the rolls on the water-
system,F570 kN/m, as required by Eq.~2.6!. The figure
also shows the equlibrium distance between the rolls,dmin .
As a consequence of the increasingF f , dmin also increases
i.e., the pressure in the water phase forces the rolls to
crease their distance.

The simulation results reflect important qualitative ch
acteristics of the rolling process in paper machines. As m
tioned in Sec. I, the acceleration of the water phase in
rolling zone has already been postulated in Ref.@2# based on
lt

n-

-
n-
e

an experimental data analysis. The increase ofdmin was veri-
fied on an experimental paper machine in the Heimb
laboratory. The pressure profiles in the above simulati
reflect the qualitative pattern of measured pressure profile
Ref. @13#. In particular, the pressure peak is located bef
the center of the rolling zone, as reported by Beck in R
@13#.

Beck measured pressure peaks between 70 000 Pa an
MPa depending on the initial saturation of the felt. Unfort
nately, a comparison with our results is difficult since Beck
results refer to a machine velocity of 381 m/min, which is
FIG. 11. Line forces anddmin .
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the high velocity regime where inertial forces are importa
Also, Beck used a much smaller roll diameter~15.54 cm
instead of 100 cm in our case! and there is no or no clearl
interpretable information on key parameters such as the
permeability or the initial felt saturation. At least, it seem
that the pressure peak of 300 000 Pa computed by our m
for a machine velocity of 50 m/min is in the right order
magnitude.

The upstream side fully saturated zone that develop
the simulations can be associated with a water wedge th
observed at the upstream side of the rolls in paper mach
@6#. According to observations made at an experimental
per machine in the Heimbach laboratory, this water wed
becomes smaller for machine velocities abovevs51 m/min,
which parallels the above simulation results. At aboutvs
5500 m/min, the water wedge disappears, and some wat
seen to spray off at the downstream side of the rolls. We t
conjecture that simulations beyondvs550 m/min will show
that the fully saturated zone will be further reduced on
upstream side until it is covered by the rolls again. The f
that water sprays off at the downstream side is probably
to the combined effect of the downstream-moving fully sa
rated zone on the one hand, and the upstream-moving do
stream end of the felt-rolls contact area~caused by the vis-
coelastic effect! on the other hand. We are current
implementing inertial forces into our model for a further i
vestigation of this effect.

Regarding the boundary conditions at the top and bot
surfaces of the felt, it was said above in our discussion of
~2.5! that we are currently assuming ‘‘no flow’’ conditions
Of course, the upstream side water wedge as well as the
that water sprays off at the downstream side at higher vel
ties show that this condition is partially violated in realit
The latter effect can be safely neglected, since we focus
t.

lt

el
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es
a-
e
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s

e
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-
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m
q.

ct
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n

the slow flow regime here, referring to velocities up tovs
550 m/min, where there are only negligible water loss
observed at the downstream side of the rolls. The upstre
side water wedge, on the other hand, undoubtedly viola
the ‘‘no flow’’ condition, since at that point water crosses t
top and bottom surfaces of the felt. However, it is importa
to note that this does not mean any net losses since the w
wedge is stationary ifvs is kept fixed. Then, any water vol
ume that flows from the felt into the wedge is replaced by
equivalent volume flowing backwards into the felt, forced
the downstream moving surfaces of the rolls. Thus at
upstream side our use of a no flow condition can be see
an approximation of the real situation where there is ‘‘no n
flow’’ through the felt surfaces.

V. CONCLUSIONS

A model has been developed that can be used to ana
the evolution of a fully saturated zone in processes involv
the rolling of unsaturated porous materials. The model
been expressed as a nonlinear convection-diffusion equa
that can be solved by~upwind! finite volume techniques. It
was shown that the model correctly reproduces qualita
characteristics of paper machine rolling processes. Altho
the model was developed with a focus on paper mach
rolling processes, we expect that it will be useful for
analysis of other rolling processes too. In current models
sugar cane rolling, for example, the location and size of
fully saturated zone is not computed butassumed a priori
@21#. We are currently developing extensions of the exist
models for sugar cane pressing based on a replacement o
viscoelastic part of our model by a model that includes
plastic deformation of sugar cane. Also, we are extend
our model to account for multiple dimensions and the h
velocity regime.
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